报告题目:By-design Functional Molecular and Polymeric
Materials: An Odyssey in Dynamic Covalent Chemistry
报 告 人:Prof. Wei Zhang
Department of Chemistry
University of Colorado
报告地点:无机-超分子楼二楼报告厅
报告时间:2019年06月24日上午10:30(星期一)
Biosketch:
Dr. Wei Zhang received his B.S. in Chemistry from Peking University in 2000, and his Ph.D. in Chemistry from University of Illinois at Urbana-Champaign (UIUC) (with Prof. Jeffrey Moore) in 2005. After a postdoc stint at MIT (with Prof. Timothy Swager), he started his independent career at the Department of Chemistry and Biochemistry at University of Colorado, Boulder in 2008, and was promoted to Associate and Full Professor with tenure in 2014 and 2018, respectively. His research is focused on utilizing dynamic covalent chemistry to develop novel organic or hybrid functional materials targeting a broad range of environmental, energy and biological applications, such as carbon capture, molecular separation, nanocomposite fabrication, energy storage, and self-healing materials. The awards and honors he has received include 2015 Guest Professorship at ETH Zürich, 2014 Tang Ao-Qing Guest Professorship at Jilin University, 2013 Provost’s Faculty Achievement Award, 2013 Alfred P. Sloan Research Fellow, 2013 CAPA Distinguished Junior Faculty Award, 2012 3M Non-Tenured Faculty Award, 2011 National Science Foundation CAREER Award, and 2011 University New Inventor of the Year.
Abstract:
Dynamic covalent chemistry (DCvC) has attracted tremendous research interest due to its unique reversible and adaptable nature, which enables constitutional change of molecular components and system responsiveness to environmental stimuli. This talk will focus on Zhang group recent progress in design and synthesis of well-defined molecular architectures and functional materials through dynamic covalent chemistry and their various applications. Under thermodynamically-controlled conditions, discrete complex functional molecules, such as molecular cages, can be efficiently constructed from simple building blocks. Crystalline polymers with long range structural order as well as responsive, malleable, and re-healable polymers can be obtained through dynamic covalent synthesis. These materials have shown a variety of important applications, such as light harvesting, controlled ultrafine nanoparticle synthesis, catalysis, and energy storage. Our results illustrate how the thermodynamically controlled DCvC can be utilized to construct target-specific organic functional materials with structural control on molecular level and enable their practical applications.